Warning: putenv() has been disabled for security reasons in /home/users4/d/debrouilloweb/www/wikidebrouillard/LocalSettings.php on line 193

Warning: putenv() has been disabled for security reasons in /home/users4/d/debrouilloweb/www/wikidebrouillard/LocalSettings.php on line 197

Warning: putenv() has been disabled for security reasons in /home/users4/d/debrouilloweb/www/wikidebrouillard/includes/parser/Parser.php on line 2338

Warning: putenv() has been disabled for security reasons in /home/users4/d/debrouilloweb/www/wikidebrouillard/includes/parser/Parser.php on line 2338

Warning: putenv() has been disabled for security reasons in /home/users4/d/debrouilloweb/www/wikidebrouillard/includes/parser/Parser.php on line 2338

Warning: putenv() has been disabled for security reasons in /home/users4/d/debrouilloweb/www/wikidebrouillard/includes/parser/Parser.php on line 2338

Warning: putenv() has been disabled for security reasons in /home/users4/d/debrouilloweb/www/wikidebrouillard/includes/parser/Parser.php on line 2338

Warning: putenv() has been disabled for security reasons in /home/users4/d/debrouilloweb/www/wikidebrouillard/includes/parser/Parser.php on line 2338
[ Wikidébrouillard ] Programme de Mathématiques au collège

Programme de Mathématiques au collège

De Wikidebrouillard.

Ligne 270 : Ligne 270 :
* Prisme, cylindre de révolution.
* Prisme, cylindre de révolution.
 +
 +
==Classe de quatrième==
 +
 +
===A. Organisation et gestion de données, fonctions===
 +
 +
Comme en classe de cinquième, le mot « fonction » est employé, chaque fois que nécessaire, en situation, et sans qu’une définition formelle de la notion de fonction soit donnée. Les tableurs-grapheurs, dont l’usage a été introduit dès la classe de cinquième, donnent accès à une façon particulière de désigner une variable : par l’emplacement de la cellule où elle se trouve dans le tableau. Cette nouveauté est un enrichissement pour le travail sur la notion de variable, effectué sur des exemples variés.
 +
 +
La résolution de problèmes a pour objectifs :
 +
* de consolider et d’enrichir les raisonnements pour traiter des situations de proportionnalité, pour produire ou interpréter des résumés statistiques (moyennes, graphiques), pour analyser la pertinence d’un graphique au regard de la situation étudiée,
 +
* d’organiser des calculs ou créer un graphique avec un tableur.
 +
 +
====Utilisation de la proportionnalité====
 +
 +
* Quatrième proportionnelle.
 +
* Calculs faisant intervenir des pourcentages.
 +
 +
====Proportionnalité====
 +
 +
* ‘’Représentations graphiques’’.
 +
 +
====Traitement des données====
 +
 +
* ‘’Moyennes pondérées’’.
 +
 +
===B. Nombres et Calculs===
 +
 +
La pratique du calcul numérique (exact ou approché) sous ses différentes formes en interaction (calcul mental, calcul à la main, calcul à la machine ou avec un ordinateur) permet la maîtrise des procédures de calcul effectivement utilisées, l’acquisition de savoir-faire dans la comparaison des nombres ainsi que la réflexion et l’initiative dans le choix de l’écriture appropriée d’un nombre suivant la situation. Le calcul littéral qui a fait l’objet d’une première approche en classe de cinquième, par le biais de la transformation d’écritures, se développe en classe de quatrième, en veillant à ce que les élèves donnent du sens aux activités entreprises dans ce cadre, en particulier par l’utilisation de formules issues des sciences et de la technologie.
 +
 +
La résolution de problèmes a pour objectifs :
 +
* d’entretenir et d’enrichir la pratique du calcul mental, du calcul à la main et l’utilisation raisonnée des calculatrices ;
 +
* d’assurer la maîtrise des calculs sur les nombres relatifs et les expressions numériques ;
 +
* de conduire les raisonnements permettant de traiter diverses situations (issues de la vie courante, des différents champs des mathématiques et des autres disciplines, notamment scientifiques) à l’aide de calculs numériques, d’équations ou d’expressions littérales ;
 +
* de savoir choisir l’écriture appropriée d’un nombre ou d’une expression littérale suivant la situation.
 +
 +
====Calcul numérique====
 +
 +
* Opérations (+, – , ⋅ , :) sur les nombres relatifs en écriture décimale. Produit de nombres positifs en écriture fractionnaire.
 +
* ‘’Opérations (+, – , ⋅ ) sur les nombres relatifs en écriture fractionnaire (non nécessairement simplifiée).’’
 +
* ‘’Division de deux nombres relatifs en écriture fractionnaire.’’
 +
* ‘’Enchaînement d’opérations.’’
 +
* Puissances d’exposant entier relatif.
 +
* ‘’Notation scientifique’’.
 +
 +
====Calcul littéral====
 +
 +
* Développement.
 +
* Comparaison de deux nombres relatifs.
 +
* ‘’Résolution de problèmes conduisant à une équation du premier degré à une inconnue.’’
 +
 +
===C. Géométrie===
 +
 +
Dans le plan, les travaux portent sur les figures usuelles déjà étudiées (triangles, cercles, quadrilatères particuliers), pour lesquelles il est indispensable de continuer à faire fonctionner les résultats mis en place. L’étude plus approfondie du triangle rectangle et d’une nouvelle configuration (celle de triangles déterminés par deux droites parallèles coupant deux sécantes) permet d’aborder quelques aspects numériques fondamentaux de la géométrie du plan. Certaines propriétés géométriques d’un agrandissement ou d’une réduction d’une figure sont également étudiées. L’effet sur les aires et les volumes n’est abordé qu’en classe de troisième.
 +
Les activités de découverte, d’élaboration et de rédaction d’une démonstration sont de natures différentes et doivent faire l’objet d’une différenciation explicite. Dans l’espace, les travaux sur les solides étudiés exploitent largement les résultats de géométrie plane. L’étude de configurations de géométrie dans l’espace donne des exercices et des illustrations pour différents champs du programme. À ce titre, il convient d’aborder la géométrie dans l’espace suffisamment tôt dans l’année scolaire.
 +
 +
La résolution de problèmes a pour objectifs :
 +
* de connaître les objets usuels du plan et de l’espace et d’utiliser leurs propriétés géométriques et les relations métriques associées ;
 +
* de développer les capacités heuristiques et de conduire sans formalisme des raisonnements géométriques simples utilisant les propriétés des figures usuelles, les symétries, les relations métriques, les angles ou les aires ;
 +
* d’entretenir en l’enrichissant la pratique des constructions géométriques (aux instruments et à l’aide d’un logiciel de géométrie dynamique) et des raisonnements sous-jacents ;
 +
* d’initier les élèves à la démonstration ;
 +
* de poursuivre la familiarisation avec les représentations planes des solides de l’espace ;
 +
* de s’initier aux propriétés laissées invariantes par un agrandissement ou une réduction de figure.
 +
 +
====Figures planes====
 +
 +
* Triangle : milieux et parallèles.
 +
* ‘’Triangles déterminés par deux parallèles coupant deux demi- droites de même origine.’’
 +
* Triangle rectangle : théorème de Pythagore.
 +
* ‘’Triangle rectangle : cosinus d’un angle.’’
 +
* ‘’Triangle rectangle : cercle circonscrit.’’
 +
* ‘’Distance d’un point à une droite.’’
 +
* Tangente à un cercle.
 +
* Bissectrice d’un angle.
 +
* ‘’Bissectrices et cercle inscrit.’’
 +
 +
=====Configurations dans l’espace====
 +
 +
* ‘’Pyramide et cône de révolution.’’
 +
 +
====Agrandissement et réduction====
 +
 +
===D. Grandeurs et mesures===
 +
 +
Cette rubrique s’appuie notamment sur la résolution de problèmes empruntés à la vie courante et aux autres disciplines. Les notions de mouvement uniforme et de vitesse ont été travaillées en classe de cinquième dans le cadre de la proportionnalité. La notion de vitesse en tant que grandeur quotient est abordée pour la première fois en classe de quatrième. Comme dans les classes précédentes, l’utilisation d’unités dans les calculs sur les grandeurs est légitime. Elle est de nature à en faciliter le contrôle et à en soutenir le sens.
 +
 +
La résolution de problèmes a pour objectifs :
 +
* d’initier les élèves à des grandeurs quotient,
 +
* de compléter les connaissances et consolider les raisonnements permettant de calculer les grandeurs travaillées antérieurement (longueurs, angles, aires, volumes),
 +
* de savoir choisir les unités adaptées et d’effectuer les changements d’unités.
 +
 +
====Aires et volumes====
 +
 +
* Calculs d’aires et volumes.
 +
 +
====Grandeurs quotients courantes====
 +
 +
* Vitesse moyenne.

Version du 11 mars 2015 à 15:43

Programme de mathématiques 2015 pour le collège

Sommaire

Mathématiques au collège : objectifs et thèmes généraux

N.B. : les informations ci-dessous sont synthétisées ou recopiées à partir du programme scolaire de l'Education Nationale disponible ici [1]. Consulter le programme complet pour plus d'informations sur les objectifs de développement de compétences et les activités proposées pour chaque notion abordée dans le programme.

Objectifs

Développer ses capacités de raisonnement, d'imagination et d'analyse critique, poser les bases indispensables d’une culture mathématique.

À travers la résolution de problèmes, les élèves apprennent à :

  • identifier et formuler des questions
  • faire des hypothèses et expérimenter sur des exemples
  • bâtir une argumentation
  • contrôler les résultats obtenus en évaluant leur pertinence
  • communiquer une recherche
  • mettre en forme une solution

Au programme

De la sixième à la troisième, l'enseignement des mathématiques s'appuie sur l'étude de quatre champs :

  • organisation et gestion de données, fonctions
  • nombres et calcul
  • géométrie
  • grandeurs et mesures

En sixième

Les élèves consolident et enrichissent leurs acquis, en continuité avec le programme de l'école primaire. Ils acquièrent de nouvelles méthodes et développent leur capacité à utiliser des outils mathématiques.

  • situations de proportionnalité, représentation des données
  • nombres décimaux, développement du calcul mental et utilisation de la calculatrice
  • reconnaissance et construction de figures, notions de symétrie par rapport à un axe
  • unités de mesure, angles

En cinquième et quatrième

Les élèves approfondissent les notions et concepts qu'ils ont déjà abordés.

  • pourcentages, mise en place des premiers outils statistiques, repérage sur une droite ou un plan
  • calcul sur les nombres relatifs entiers et décimaux, calcul littéral (initiation)
  • représentations de figures de l’espace, étude des symétries
  • calculs d'aires et de volumes

En troisième

Les élèves élargissent leurs compétences.

  • premiers éléments de base en statistique descriptive et en probabilité
  • calcul numérique (nombres entiers, décimaux et fractionnaires, relatifs ou non, proportionnalité) et premiers éléments de calcul littéral, notion de fonction
  • figures de base et propriétés de configurations du plan et de l’espace
  • réduction et agrandissement, grandeurs composées et changements d’unités

Ils apprennent aussi à utiliser un tableur-grapheur et un logiciel de construction géométrique.

Ces informations sont extraites du site de l'Education Nationale. [2]

Classe de sixième

L’enseignement des mathématiques en classe de sixième a une triple visée :

  • consolider, enrichir et structurer les acquis de l’école primaire ;
  • préparer à l’acquisition des méthodes et des modes de pensée caractéristiques des mathématiques (résolution de problèmes et divers moyens d’accéder à la vérité) ;
  • développer la capacité à utiliser les outils mathématiques dans différents domaines (vie courante, autres disciplines).

Le vocabulaire et les notations nouvelles ( ⊕ , % , ∈ , [AB] , (AB) , [AB) , AB, ) sont introduits au fur et à mesure de leur utilité, et non au départ d’un apprentissage.

Note : les points du programme (connaissances, capacités et exemples) qui ne sont pas exigibles pour le socle pendant l’année scolaire concernée sont écrits en italiques (il peuvent être exigibles ultérieurement).

A. Organisation et gestion de données. Fonctions

La résolution de problèmes de proportionnalité est déjà travaillée à l’école primaire. Elle se poursuit en Sixième, avec des outils nouveaux. La proportionnalité fait l'objet d'un apprentissage continu et progressif sur les quatre années du collège et permet de comprendre et de traiter de nombreuses notions du programme. À l’école primaire, les élèves ont été mis en situation de prendre de l’information à partir de tableaux, de diagrammes ou de graphiques. Ce travail se poursuit au collège, notamment avec l’objectif de rendre les élèves capables de faire une interprétation critique de l’information apportée par ces types de présentation des données, aux natures très diverses, en liaison avec d’autres disciplines (géographie, sciences de la vie et de la terre, technologie...).

La résolution de problèmes a pour objectifs :

  • de mettre en place les principaux raisonnements qui permettent de reconnaître et traiter les situations de proportionnalité,
  • d’initier les élèves à la présentation, à l’utilisation et à l’interprétation de données sous diverses formes (tableaux, graphiques...).

Proportionnalité

  • Propriété de linéarité.
  • Tableau de proportionnalité.
  • Pourcentages.

Organisation et représentation de données

  • Représentations usuelles : tableaux.
  • Repérage sur un axe.
  • Représentations usuelles : diagrammes en bâtons, diagrammes circulaires ou demi-circulaires, graphiques cartésiens.

B. Nombres et Calculs

En continuité avec l'école élémentaire les problèmes doivent permettre aux élèves d'associer à une situation concrète un travail numérique, de mieux saisir le sens des opérations figurant au programme. Les problèmes proposés sont issus de la vie courante, des autres disciplines ou des mathématiques. Les travaux numériques prennent appui sur la pratique du calcul exact ou approché sous ses différentes formes, souvent utilisées en interaction : calcul mental, calcul à la main ou instrumenté. À la suite de l’école primaire, le collège doit, en particulier, permettre aux élèves d'entretenir et de développer leurs compétences en calcul mental notamment pour la perception des ordres de grandeur.

La résolution de problèmes a pour objectifs :

  • de consolider le sens des opérations, de développer le calcul mental, le calcul à la main et l’utilisation raisonnée des calculatrices, de conforter et d’étendre la connaissance des nombres décimaux,
  • de mettre en place une nouvelle signification de l’écriture fractionnaire comme quotient de deux entiers,
  • de savoir choisir l’écriture appropriée d’un nombre suivant la situation,
  • de percevoir l’ordre de grandeur d’un nombre.

Nombres entiers et décimaux

  • Désignations.
  • Ordre.
  • Valeur approchée décimale.

Opérations

  • Addition, soustraction, multiplication et division.
  • Multiples et diviseurs.
  • Sens des opérations.
  • Techniques élémentaires de calcul.
  • Ordre de grandeur.

Nombres en écriture fractionnaire

  • Écriture fractionnaire.
  • Quotient exact
  • Un quotient ne change pas quand on multiplie son numérateur et son dénominateur par un même nombre

C. Géométrie

À l’école élémentaire, les élèves ont acquis une première expérience des figures et des solides les plus usuels, en passant d’une reconnaissance perceptive (reconnaissance des formes) à une connaissance plus analytique prenant appui sur quelques propriétés (alignement, perpendicularité, parallélisme, égalité de longueurs, milieu, axes de symétrie), vérifiées à l’aide d’instruments. Ils ont été entraînés au maniement de ces instruments (équerre, règle, compas, gabarit) sur des supports variés, pour construire des figures, en particulier pour le tracé de perpendiculaires et de parallèles à l’aide de la règle et de l’équerre.

Les travaux conduits en sixième prennent en compte les acquis antérieurs, évalués avec précision et obéissent à de nouveaux objectifs. Ils doivent viser d'une part à stabiliser les connaissances des élèves et d'autre part à les structurer, et peu à peu à les hiérarchiser. L'objectif d’initier à la déduction est aussi pris en compte. À cet effet, les activités qui permettent le développement des capacités à décortiquer et à construire des figures et des solides simples, à partir de la reconnaissance des propriétés élémentaires, occupent une place centrale.

Les travaux géométriques sont conduits dans différents cadres : espace ordinaire (cour de récréation, par exemple), espace de la feuille de papier uni ou quadrillé, écran d’ordinateur. La résolution des mêmes problèmes dans ces environnements différents, et les interactions qu’elle suscite, contribuent à une approche plus efficace des concepts mis en œuvre. Les connaissances géométriques permettent de modéliser des situations (par exemple représenter un champ par un rectangle) et de résoudre ainsi des problèmes posés dans l’espace ordinaire. Les formes géométriques (figures planes, solides) se trouvent dans de nombreux domaines : architecture, œuvres d'art, éléments naturels, objets d’usage courant... Ces mises en relation permettent peu à peu de dégager le caractère universel des objets géométriques par rapport à leurs diverses réalisations naturelles ou artificielles.

La résolution de problèmes a pour objectifs :

  • de compléter la connaissance des propriétés des figures planes et des solides usuels,
  • de maîtriser les techniques de construction (utilisation des instruments et logiciels adaptés, mobilisation des connaissances dans les raisonnements implicites sous-jacents),
  • de reconnaître les figures planes usuelles dans une configuration complexe,
  • de conduire sans formalisme des raisonnements simples utilisant les propriétés des figures usuelles ou de la symétrie axiale,
  • de passer d’un objet de l’espace à ses représentations.

Figures planes

  • Notions de parallèle, de perpendiculaire.
  • Cercle.
  • Propriétés des quadrilatères usuels.
  • Propriétés et construction des triangles usuels.
  • Médiatrice d’un segment.
  • Bissectrice d’un angle.
  • Constructions géométriques.

Symétrie orthogonale par rapport à une droite (symétrie axiale)

Parallélépipède rectangle : patrons, représentation en perspective

D. Grandeurs et mesures

En continuité avec le travail effectué à l’école élémentaire, cette rubrique s’appuie sur la résolution de problèmes souvent empruntés à la vie courante. Elle permet d’aborder l’histoire des sciences, d’assurer des liens avec les autres disciplines, en particulier la technologie et les sciences de la vie et de la Terre, de réinvestir les connaissances acquises en mathématiques, mais aussi d’en construire de nouvelles. Par exemple, le recours aux longueurs et aux aires permet d'enrichir le travail sur les nombres non entiers et les opérations étudiées en classe de sixième. Il est important que les élèves disposent de références concrètes pour certaines grandeurs et soient capables d’estimer une mesure (ordre de grandeur). L’utilisation d'unités dans les calculs sur les grandeurs est légitime. Elle est de nature à en faciliter le contrôle et à en soutenir le sens. À travers les activités sur les longueurs, les aires et les volumes, les élèves peuvent se construire et utiliser un premier répertoire de formules.

La résolution de problèmes a pour objectifs :

  • de compléter les connaissances relatives aux longueurs, aires, masses et durées,
  • de savoir choisir une unité appropriée et effectuer des changements d’unités,
  • de consolider la notion d’angle, d’assurer la maîtrise des notions d’aire et de périmètre,
  • de mettre en place la notion de volume et de commencer l’étude du système d’unités de mesure des volumes.

Notions :

  • Longueurs, masses, durées
  • Angles
  • Aires : mesure, comparaison et calcul d’aires
  • Volumes

Classe de cinquième

A. Organisation et gestion de données, fonctions

En classe de cinquième, la proportionnalité occupe toujours une place centrale. Les méthodes de résolution des problèmes de proportionnalité évoluent avec les connaissances des élèves, notamment avec une meilleure maîtrise de la notion de quotient. La partie relative au traitement et à la représentation de données a pour objectif d’initier à la lecture, à l’interprétation, à la réalisation et à l’utilisation de diagrammes, tableaux et graphiques et de mettre en évidence la relativité de l’information représentée. Les travaux correspondants sont conduits à partir d’exemples et en liaison, chaque fois qu’il est possible, avec l’enseignement des autres disciplines et l’étude des thèmes de convergence.

La résolution de problèmes a pour objectifs

  • d’affermir la maîtrise des principaux raisonnements qui permettent de traiter les situations de proportionnalité,
  • d’initier les élèves au repérage sur une droite graduée ou dans le plan muni d’un repère,
  • d’acquérir et interpréter les premiers outils statistiques (organisation et représentation de données, fréquences) utiles dans d’autres disciplines et dans la vie de citoyen, de se familiariser avec des écritures littérales.

Proportionnalité

  • Propriété de linéarité.
  • Tableau de proportionnalité.
  • Passage à l’unité ou « règle de trois ».
  • Pourcentage.
  • Échelle.

Expressions littérales (formules)

Activités graphiques

  • Repérage sur une droite graduée.
  • Repérage dans le plan.

Représentation et traitement de données

  • Effectifs.
  • Fréquences.
  • Classes.
  • Tableau de données, représentations graphiques de données.

B. Nombres et Calculs

Les problèmes proposés associant à une situation donnée une activité numérique, renforcent le sens des opérations et des diverses écritures numériques et littérales. Ils sont principalement issus de la vie courante, des autres disciplines ou des mathématiques. Il convient de ne pas multiplier les activités purement techniques. Toutes les travaux numériques fournissent des occasions de pratiquer le calcul exact ou approché sous toutes ses formes, utilisées en interaction : calcul mental, à la main ou instrumenté.

La résolution de problèmes a pour objectifs :

  • d’entretenir et développer la pratique du calcul mental, du calcul à la main et l’utilisation raisonnée des calculatrices ;
  • d’assurer la maîtrise des calculs d’expressions numériques sur les nombres décimaux positifs et prévoir l’ordre de grandeur d’un résultat ;
  • d’initier aux nombres relatifs et aux calculs sur les nombres en écriture fractionnaire ; de familiariser les élèves aux raisonnements conduisant à des expressions littérales ;
  • d’apprendre à choisir et interpréter l’écriture appropriée d’un nombre ou d’une expression littérale suivant la situation,
  • d’apprendre à effectuer des transformations simples d’écriture ;
  • d’initier à la notion d’équation.

Nombres entiers et décimaux positifs : calcul, divisibilité sur les entiers

  • Enchaînement d’opérations.
  • Distributivité de la multiplication par rapport à l’addition.
  • Division par un décimal.
  • Multiples et diviseurs, divisibilité.

Nombres positifs en écriture fractionnaire : sens et calculs

  • Sens de l’écriture fractionnaire.
  • Addition et soustraction.
  • Multiplication.

Nombres relatifs entiers et décimaux : sens et calculs

  • Notion de nombre relatif. Ordre.
  • Addition et soustraction de nombres relatifs.

Initiation à la notion d’équation

C. Géométrie

En classe de cinquième, l’étude de la symétrie centrale permet de réorganiser et de compléter les connaissances sur les figures. Les travaux de géométrie plane prennent toujours appui sur des figures dessinées, suivant les cas, à main levée, à l’aide des instruments de dessin et de mesure, ou dans un environnement informatique. Ils sont conduits en liaison étroite avec l’étude des autres rubriques. Les diverses activités de géométrie habituent les élèves à expérimenter et à conjecturer, et permettent progressivement de s’entraîner à des justifications mettant en œuvre les outils du programme et ceux déjà acquis en classe de sixième.

La résolution de problèmes a pour objectifs de connaître et utiliser les propriétés conservées par symétrie (axiale ou centrale), les propriétés relatives aux figures usuelles (triangles, parallélogrammes, cercles), d’entretenir la pratique des constructions géométriques (aux instruments et à l‘aide d’un logiciel de géométrie) et des raisonnements sous-jacents qu’elles mobilisent, de conduire sans formalisme des raisonnements géométriques simples, de familiariser les élèves avec les représentations de figures de l’espace.

Figures planes

  • Parallélogramme.
  • Figures simples ayant un centre de symétrie ou des axes de symétrie.
  • Angles.
  • Propriétés des triangles usuels.
  • Caractérisation angulaire du parallélisme.
  • Triangle, somme des angles d’un triangle.
  • Construction de triangles et inégalité triangulaire.
  • Médiatrice d’un segment.
  • Cercle circonscrit à un triangle.
  • Médianes et hauteurs d’un triangle.

Symétries

  • Symétrie axiale.
  • Symétrie centrale.

Prismes droits, cylindres de révolution

D. Grandeurs et mesures

Cette rubrique s’appuie notamment sur la résolution de problèmes empruntés à la vie courante. Comme en classe de sixième, l’utilisation d’unités dans les calculs sur les grandeurs est légitime. Elle est de nature à en faciliter le contrôle et à en soutenir le sens. Les questions de changement d’unités sont reliées à l’utilisation de la proportionnalité de préférence au recours systématique à un tableau de conversion.

La résolution de problèmes a pour objectifs de compléter les connaissances relatives aux longueurs, aux angles, aux masses et aux durées, de calculer les aires ou volumes attachés aux figures planes ou solides usuels, de poursuivre l’étude du système d’unités de mesure des volumes, d’apprendre à choisir les unités adaptées et à effectuer des changements d’unité.

Longueurs, masses, durées

Angles

Aires

  • Parallélogramme, triangle, disque.

Volumes

  • Prisme, cylindre de révolution.

Classe de quatrième

A. Organisation et gestion de données, fonctions

Comme en classe de cinquième, le mot « fonction » est employé, chaque fois que nécessaire, en situation, et sans qu’une définition formelle de la notion de fonction soit donnée. Les tableurs-grapheurs, dont l’usage a été introduit dès la classe de cinquième, donnent accès à une façon particulière de désigner une variable : par l’emplacement de la cellule où elle se trouve dans le tableau. Cette nouveauté est un enrichissement pour le travail sur la notion de variable, effectué sur des exemples variés.

La résolution de problèmes a pour objectifs :

  • de consolider et d’enrichir les raisonnements pour traiter des situations de proportionnalité, pour produire ou interpréter des résumés statistiques (moyennes, graphiques), pour analyser la pertinence d’un graphique au regard de la situation étudiée,
  • d’organiser des calculs ou créer un graphique avec un tableur.

Utilisation de la proportionnalité

  • Quatrième proportionnelle.
  • Calculs faisant intervenir des pourcentages.

Proportionnalité

  • ‘’Représentations graphiques’’.

Traitement des données

  • ‘’Moyennes pondérées’’.

B. Nombres et Calculs

La pratique du calcul numérique (exact ou approché) sous ses différentes formes en interaction (calcul mental, calcul à la main, calcul à la machine ou avec un ordinateur) permet la maîtrise des procédures de calcul effectivement utilisées, l’acquisition de savoir-faire dans la comparaison des nombres ainsi que la réflexion et l’initiative dans le choix de l’écriture appropriée d’un nombre suivant la situation. Le calcul littéral qui a fait l’objet d’une première approche en classe de cinquième, par le biais de la transformation d’écritures, se développe en classe de quatrième, en veillant à ce que les élèves donnent du sens aux activités entreprises dans ce cadre, en particulier par l’utilisation de formules issues des sciences et de la technologie.

La résolution de problèmes a pour objectifs :

  • d’entretenir et d’enrichir la pratique du calcul mental, du calcul à la main et l’utilisation raisonnée des calculatrices ;
  • d’assurer la maîtrise des calculs sur les nombres relatifs et les expressions numériques ;
  • de conduire les raisonnements permettant de traiter diverses situations (issues de la vie courante, des différents champs des mathématiques et des autres disciplines, notamment scientifiques) à l’aide de calculs numériques, d’équations ou d’expressions littérales ;
  • de savoir choisir l’écriture appropriée d’un nombre ou d’une expression littérale suivant la situation.

Calcul numérique

  • Opérations (+, – , ⋅ , :) sur les nombres relatifs en écriture décimale. Produit de nombres positifs en écriture fractionnaire.
  • ‘’Opérations (+, – , ⋅ ) sur les nombres relatifs en écriture fractionnaire (non nécessairement simplifiée).’’
  • ‘’Division de deux nombres relatifs en écriture fractionnaire.’’
  • ‘’Enchaînement d’opérations.’’
  • Puissances d’exposant entier relatif.
  • ‘’Notation scientifique’’.

Calcul littéral

  • Développement.
  • Comparaison de deux nombres relatifs.
  • ‘’Résolution de problèmes conduisant à une équation du premier degré à une inconnue.’’

C. Géométrie

Dans le plan, les travaux portent sur les figures usuelles déjà étudiées (triangles, cercles, quadrilatères particuliers), pour lesquelles il est indispensable de continuer à faire fonctionner les résultats mis en place. L’étude plus approfondie du triangle rectangle et d’une nouvelle configuration (celle de triangles déterminés par deux droites parallèles coupant deux sécantes) permet d’aborder quelques aspects numériques fondamentaux de la géométrie du plan. Certaines propriétés géométriques d’un agrandissement ou d’une réduction d’une figure sont également étudiées. L’effet sur les aires et les volumes n’est abordé qu’en classe de troisième. Les activités de découverte, d’élaboration et de rédaction d’une démonstration sont de natures différentes et doivent faire l’objet d’une différenciation explicite. Dans l’espace, les travaux sur les solides étudiés exploitent largement les résultats de géométrie plane. L’étude de configurations de géométrie dans l’espace donne des exercices et des illustrations pour différents champs du programme. À ce titre, il convient d’aborder la géométrie dans l’espace suffisamment tôt dans l’année scolaire.

La résolution de problèmes a pour objectifs :

  • de connaître les objets usuels du plan et de l’espace et d’utiliser leurs propriétés géométriques et les relations métriques associées ;
  • de développer les capacités heuristiques et de conduire sans formalisme des raisonnements géométriques simples utilisant les propriétés des figures usuelles, les symétries, les relations métriques, les angles ou les aires ;
  • d’entretenir en l’enrichissant la pratique des constructions géométriques (aux instruments et à l’aide d’un logiciel de géométrie dynamique) et des raisonnements sous-jacents ;
  • d’initier les élèves à la démonstration ;
  • de poursuivre la familiarisation avec les représentations planes des solides de l’espace ;
  • de s’initier aux propriétés laissées invariantes par un agrandissement ou une réduction de figure.

Figures planes

  • Triangle : milieux et parallèles.
  • ‘’Triangles déterminés par deux parallèles coupant deux demi- droites de même origine.’’
  • Triangle rectangle : théorème de Pythagore.
  • ‘’Triangle rectangle : cosinus d’un angle.’’
  • ‘’Triangle rectangle : cercle circonscrit.’’
  • ‘’Distance d’un point à une droite.’’
  • Tangente à un cercle.
  • Bissectrice d’un angle.
  • ‘’Bissectrices et cercle inscrit.’’

=Configurations dans l’espace

  • ‘’Pyramide et cône de révolution.’’

Agrandissement et réduction

D. Grandeurs et mesures

Cette rubrique s’appuie notamment sur la résolution de problèmes empruntés à la vie courante et aux autres disciplines. Les notions de mouvement uniforme et de vitesse ont été travaillées en classe de cinquième dans le cadre de la proportionnalité. La notion de vitesse en tant que grandeur quotient est abordée pour la première fois en classe de quatrième. Comme dans les classes précédentes, l’utilisation d’unités dans les calculs sur les grandeurs est légitime. Elle est de nature à en faciliter le contrôle et à en soutenir le sens.

La résolution de problèmes a pour objectifs :

  • d’initier les élèves à des grandeurs quotient,
  • de compléter les connaissances et consolider les raisonnements permettant de calculer les grandeurs travaillées antérieurement (longueurs, angles, aires, volumes),
  • de savoir choisir les unités adaptées et d’effectuer les changements d’unités.

Aires et volumes

  • Calculs d’aires et volumes.

Grandeurs quotients courantes

  • Vitesse moyenne.
PR

Programme de Mathématiques au collège

Rechercher

Page Discussion Historique
Powered by MediaWiki
Creative Commons - Paternite Partage a l

© Graphisme : Les Petits Débrouillards Grand Ouest (Patrice Guinche - Jessica Romero) | Développement web : Libre Informatique