(→Classe de sixième) |
|||
Ligne 65 : | Ligne 65 : | ||
Le vocabulaire et les notations nouvelles ( ⊕ , % , ∈ , [AB] , (AB) , [AB) , AB, ) sont introduits au fur et à mesure de leur utilité, et non au départ d’un apprentissage. | Le vocabulaire et les notations nouvelles ( ⊕ , % , ∈ , [AB] , (AB) , [AB) , AB, ) sont introduits au fur et à mesure de leur utilité, et non au départ d’un apprentissage. | ||
- | Note : les points du programme (connaissances, capacités et exemples) qui ne sont pas exigibles pour le socle pendant l’année scolaire concernée sont écrits en italiques (il peuvent être exigibles ultérieurement). | + | '''Note : les points du programme (connaissances, capacités et exemples) qui ne sont pas exigibles pour le socle pendant l’année scolaire concernée sont écrits en italiques (il peuvent être exigibles ultérieurement).''' |
===A. Organisation et gestion de données. Fonctions=== | ===A. Organisation et gestion de données. Fonctions=== |
Programme de mathématiques 2015 pour le collège
Sommaire[masquer]
|
N.B. : les informations ci-dessous sont synthétisées ou recopiées à partir du programme scolaire de l'Education Nationale disponible ici [1]. Consulter le programme complet pour plus d'informations sur les objectifs de développement de compétences et les activités proposées pour chaque notion abordée dans le programme.
Développer ses capacités de raisonnement, d'imagination et d'analyse critique, poser les bases indispensables d’une culture mathématique.
À travers la résolution de problèmes, les élèves apprennent à :
De la sixième à la troisième, l'enseignement des mathématiques s'appuie sur l'étude de quatre champs :
Les élèves consolident et enrichissent leurs acquis, en continuité avec le programme de l'école primaire. Ils acquièrent de nouvelles méthodes et développent leur capacité à utiliser des outils mathématiques.
Les élèves approfondissent les notions et concepts qu'ils ont déjà abordés.
Les élèves élargissent leurs compétences.
Ils apprennent aussi à utiliser un tableur-grapheur et un logiciel de construction géométrique.
Ces informations sont extraites du site de l'Education Nationale. [2]
L’enseignement des mathématiques en classe de sixième a une triple visée :
Le vocabulaire et les notations nouvelles ( ⊕ , % , ∈ , [AB] , (AB) , [AB) , AB, ) sont introduits au fur et à mesure de leur utilité, et non au départ d’un apprentissage.
Note : les points du programme (connaissances, capacités et exemples) qui ne sont pas exigibles pour le socle pendant l’année scolaire concernée sont écrits en italiques (il peuvent être exigibles ultérieurement).
La résolution de problèmes de proportionnalité est déjà travaillée à l’école primaire. Elle se poursuit en Sixième, avec des outils nouveaux. La proportionnalité fait l'objet d'un apprentissage continu et progressif sur les quatre années du collège et permet de comprendre et de traiter de nombreuses notions du programme. À l’école primaire, les élèves ont été mis en situation de prendre de l’information à partir de tableaux, de diagrammes ou de graphiques. Ce travail se poursuit au collège, notamment avec l’objectif de rendre les élèves capables de faire une interprétation critique de l’information apportée par ces types de présentation des données, aux natures très diverses, en liaison avec d’autres disciplines (géographie, sciences de la vie et de la terre, technologie...).
La résolution de problèmes a pour objectifs :
En continuité avec l'école élémentaire les problèmes doivent permettre aux élèves d'associer à une situation concrète un travail numérique, de mieux saisir le sens des opérations figurant au programme. Les problèmes proposés sont issus de la vie courante, des autres disciplines ou des mathématiques. Les travaux numériques prennent appui sur la pratique du calcul exact ou approché sous ses différentes formes, souvent utilisées en interaction : calcul mental, calcul à la main ou instrumenté. À la suite de l’école primaire, le collège doit, en particulier, permettre aux élèves d'entretenir et de développer leurs compétences en calcul mental notamment pour la perception des ordres de grandeur.
La résolution de problèmes a pour objectifs :
À l’école élémentaire, les élèves ont acquis une première expérience des figures et des solides les plus usuels, en passant d’une reconnaissance perceptive (reconnaissance des formes) à une connaissance plus analytique prenant appui sur quelques propriétés (alignement, perpendicularité, parallélisme, égalité de longueurs, milieu, axes de symétrie), vérifiées à l’aide d’instruments. Ils ont été entraînés au maniement de ces instruments (équerre, règle, compas, gabarit) sur des supports variés, pour construire des figures, en particulier pour le tracé de perpendiculaires et de parallèles à l’aide de la règle et de l’équerre.
Les travaux conduits en sixième prennent en compte les acquis antérieurs, évalués avec précision et obéissent à de nouveaux objectifs. Ils doivent viser d'une part à stabiliser les connaissances des élèves et d'autre part à les structurer, et peu à peu à les hiérarchiser. L'objectif d’initier à la déduction est aussi pris en compte. À cet effet, les activités qui permettent le développement des capacités à décortiquer et à construire des figures et des solides simples, à partir de la reconnaissance des propriétés élémentaires, occupent une place centrale.
Les travaux géométriques sont conduits dans différents cadres : espace ordinaire (cour de récréation, par exemple), espace de la feuille de papier uni ou quadrillé, écran d’ordinateur. La résolution des mêmes problèmes dans ces environnements différents, et les interactions qu’elle suscite, contribuent à une approche plus efficace des concepts mis en œuvre. Les connaissances géométriques permettent de modéliser des situations (par exemple représenter un champ par un rectangle) et de résoudre ainsi des problèmes posés dans l’espace ordinaire. Les formes géométriques (figures planes, solides) se trouvent dans de nombreux domaines : architecture, œuvres d'art, éléments naturels, objets d’usage courant... Ces mises en relation permettent peu à peu de dégager le caractère universel des objets géométriques par rapport à leurs diverses réalisations naturelles ou artificielles.
La résolution de problèmes a pour objectifs :
En continuité avec le travail effectué à l’école élémentaire, cette rubrique s’appuie sur la résolution de problèmes souvent empruntés à la vie courante. Elle permet d’aborder l’histoire des sciences, d’assurer des liens avec les autres disciplines, en particulier la technologie et les sciences de la vie et de la Terre, de réinvestir les connaissances acquises en mathématiques, mais aussi d’en construire de nouvelles. Par exemple, le recours aux longueurs et aux aires permet d'enrichir le travail sur les nombres non entiers et les opérations étudiées en classe de sixième. Il est important que les élèves disposent de références concrètes pour certaines grandeurs et soient capables d’estimer une mesure (ordre de grandeur). L’utilisation d'unités dans les calculs sur les grandeurs est légitime. Elle est de nature à en faciliter le contrôle et à en soutenir le sens. À travers les activités sur les longueurs, les aires et les volumes, les élèves peuvent se construire et utiliser un premier répertoire de formules.
La résolution de problèmes a pour objectifs :
Notions :
En classe de cinquième, la proportionnalité occupe toujours une place centrale. Les méthodes de résolution des problèmes de proportionnalité évoluent avec les connaissances des élèves, notamment avec une meilleure maîtrise de la notion de quotient. La partie relative au traitement et à la représentation de données a pour objectif d’initier à la lecture, à l’interprétation, à la réalisation et à l’utilisation de diagrammes, tableaux et graphiques et de mettre en évidence la relativité de l’information représentée. Les travaux correspondants sont conduits à partir d’exemples et en liaison, chaque fois qu’il est possible, avec l’enseignement des autres disciplines et l’étude des thèmes de convergence.
La résolution de problèmes a pour objectifs
Les problèmes proposés associant à une situation donnée une activité numérique, renforcent le sens des opérations et des diverses écritures numériques et littérales. Ils sont principalement issus de la vie courante, des autres disciplines ou des mathématiques. Il convient de ne pas multiplier les activités purement techniques. Toutes les travaux numériques fournissent des occasions de pratiquer le calcul exact ou approché sous toutes ses formes, utilisées en interaction : calcul mental, à la main ou instrumenté.
La résolution de problèmes a pour objectifs :
En classe de cinquième, l’étude de la symétrie centrale permet de réorganiser et de compléter les connaissances sur les figures. Les travaux de géométrie plane prennent toujours appui sur des figures dessinées, suivant les cas, à main levée, à l’aide des instruments de dessin et de mesure, ou dans un environnement informatique. Ils sont conduits en liaison étroite avec l’étude des autres rubriques. Les diverses activités de géométrie habituent les élèves à expérimenter et à conjecturer, et permettent progressivement de s’entraîner à des justifications mettant en œuvre les outils du programme et ceux déjà acquis en classe de sixième.
La résolution de problèmes a pour objectifs de connaître et utiliser les propriétés conservées par symétrie (axiale ou centrale), les propriétés relatives aux figures usuelles (triangles, parallélogrammes, cercles), d’entretenir la pratique des constructions géométriques (aux instruments et à l‘aide d’un logiciel de géométrie) et des raisonnements sous-jacents qu’elles mobilisent, de conduire sans formalisme des raisonnements géométriques simples, de familiariser les élèves avec les représentations de figures de l’espace.
Cette rubrique s’appuie notamment sur la résolution de problèmes empruntés à la vie courante. Comme en classe de sixième, l’utilisation d’unités dans les calculs sur les grandeurs est légitime. Elle est de nature à en faciliter le contrôle et à en soutenir le sens. Les questions de changement d’unités sont reliées à l’utilisation de la proportionnalité de préférence au recours systématique à un tableau de conversion.
La résolution de problèmes a pour objectifs de compléter les connaissances relatives aux longueurs, aux angles, aux masses et aux durées, de calculer les aires ou volumes attachés aux figures planes ou solides usuels, de poursuivre l’étude du système d’unités de mesure des volumes, d’apprendre à choisir les unités adaptées et à effectuer des changements d’unité.
Comme en classe de cinquième, le mot « fonction » est employé, chaque fois que nécessaire, en situation, et sans qu’une définition formelle de la notion de fonction soit donnée. Les tableurs-grapheurs, dont l’usage a été introduit dès la classe de cinquième, donnent accès à une façon particulière de désigner une variable : par l’emplacement de la cellule où elle se trouve dans le tableau. Cette nouveauté est un enrichissement pour le travail sur la notion de variable, effectué sur des exemples variés.
La résolution de problèmes a pour objectifs :
La pratique du calcul numérique (exact ou approché) sous ses différentes formes en interaction (calcul mental, calcul à la main, calcul à la machine ou avec un ordinateur) permet la maîtrise des procédures de calcul effectivement utilisées, l’acquisition de savoir-faire dans la comparaison des nombres ainsi que la réflexion et l’initiative dans le choix de l’écriture appropriée d’un nombre suivant la situation. Le calcul littéral qui a fait l’objet d’une première approche en classe de cinquième, par le biais de la transformation d’écritures, se développe en classe de quatrième, en veillant à ce que les élèves donnent du sens aux activités entreprises dans ce cadre, en particulier par l’utilisation de formules issues des sciences et de la technologie.
La résolution de problèmes a pour objectifs :
Dans le plan, les travaux portent sur les figures usuelles déjà étudiées (triangles, cercles, quadrilatères particuliers), pour lesquelles il est indispensable de continuer à faire fonctionner les résultats mis en place. L’étude plus approfondie du triangle rectangle et d’une nouvelle configuration (celle de triangles déterminés par deux droites parallèles coupant deux sécantes) permet d’aborder quelques aspects numériques fondamentaux de la géométrie du plan. Certaines propriétés géométriques d’un agrandissement ou d’une réduction d’une figure sont également étudiées. L’effet sur les aires et les volumes n’est abordé qu’en classe de troisième. Les activités de découverte, d’élaboration et de rédaction d’une démonstration sont de natures différentes et doivent faire l’objet d’une différenciation explicite. Dans l’espace, les travaux sur les solides étudiés exploitent largement les résultats de géométrie plane. L’étude de configurations de géométrie dans l’espace donne des exercices et des illustrations pour différents champs du programme. À ce titre, il convient d’aborder la géométrie dans l’espace suffisamment tôt dans l’année scolaire.
La résolution de problèmes a pour objectifs :
Cette rubrique s’appuie notamment sur la résolution de problèmes empruntés à la vie courante et aux autres disciplines. Les notions de mouvement uniforme et de vitesse ont été travaillées en classe de cinquième dans le cadre de la proportionnalité. La notion de vitesse en tant que grandeur quotient est abordée pour la première fois en classe de quatrième. Comme dans les classes précédentes, l’utilisation d’unités dans les calculs sur les grandeurs est légitime. Elle est de nature à en faciliter le contrôle et à en soutenir le sens.
La résolution de problèmes a pour objectifs :
Les objectifs généraux et l’organisation de l’enseignement des mathématiques décrits dans l’introduction générale des programmes de mathématiques pour le collège demeurent valables pour la classe de troisième : consolider, enrichir et structurer les acquis des classes précédentes, conforter l’acquisition des méthodes et des modes de pensée caractéristiques des mathématiques, développer la capacité à utiliser les mathématiques dans différents domaines (vie courante, autres disciplines), notamment à l’occasion de l’étude de thèmes de convergence.
L’un des objectifs est de faire émerger progressivement, sur des exemples, la notion de fonction en tant que processus faisant correspondre, à un nombre, un autre nombre. Les exemples mettant en jeu des fonctions sont issus de situations concrètes ou de thèmes interdisciplinaires. Les fonctions linéaires et affines apparaissent alors comme des exemples particuliers de tels processus. L’utilisation des expressions « est fonction de » ou « varie en fonction de », amorcée dans les classes précédentes, est poursuivie et est associée à l’introduction de la notation f(x). L’usage du tableur grapheur contribue aussi à la mise en place du concept, dans ses aspects numériques comme dans ses aspects graphiques. La notion d’équation de droite n’est pas au programme de la classe de troisième.
Pour les séries statistiques, l’étude des paramètres de position est poursuivie : médiane et quartiles. Une première approche de la dispersion est envisagée. L’éducation mathématique rejoint ici l’éducation du citoyen : prendre l’habitude de s’interroger sur la signification des nombres utilisés, sur l’information apportée par un résumé statistique. De même, c’est pour permettre au citoyen d’aborder l’incertitude et le hasard dans une perspective rationnelle que sont introduits les premiers éléments relatifs à la notion de probabilité.
À la fin de cette classe terminale du collège, la maîtrise par les élèves de plusieurs types de savoirs est visée :
La résolution de problèmes a pour objectifs :
La pratique du calcul numérique (exact ou approché) sous ses différentes formes en interaction (calcul mental, calcul à la main, calcul à la machine ou avec un ordinateur) a les mêmes objectifs que dans les classes antérieures :
La résolution de problèmes a pour objectifs
Les objectifs des travaux géométriques demeurent ceux des classes antérieures du collège. L’étude et la représentation d’objets usuels du plan et de l’espace se poursuivent ainsi que le calcul de grandeurs attachées à ces objets. Les travaux sur les solides permettent de mobiliser largement les résultats des classes antérieures. À ce titre, il convient d’aborder la géométrie dans l’espace suffisamment tôt dans l’année scolaire. L’étude des configurations usuelles est enrichie en particulier de la réciproque du théorème de Thalès et de l’étude de l’angle inscrit. Le recours à des logiciels de construction géométrique (par les élèves ou de manière collective) est intégré aux séquences d’enseignement, dans l’approche d’une notion ou dans la résolution de problèmes.
La résolution de problèmes a pour objectifs
Les situations mettant en jeu des grandeurs sont souvent empruntées à la vie courante (aires de terrains, volumes de gaz, de liquides, vitesses, débits, coûts, ...) mais aussi à d’autres disciplines, notamment scientifiques, et permettent l’interaction entre les mathématiques et d’autres domaines. Les activités de comparaison d’aires d’une part, et de volumes d’autre part, de figures ou d’objets obtenus par agrandissement ou réduction, sont, en particulier, autant d’occasions de manipulations de formules et de transformations d’expressions algébriques. Comme dans les classes précédentes, l’utilisation d’unités dans les calculs sur les grandeurs est légitime. Elle est de nature à en faciliter le contrôle et à en soutenir le sens.
La résolution de problèmes a pour objectifs
© Graphisme : Les Petits Débrouillards Grand Ouest (Patrice Guinche - Jessica Romero) | Développement web : Libre Informatique