(→'''Matériel''') |
|||
(41 versions intermédiaires masquées) | |||
Ligne 1 : | Ligne 1 : | ||
{{avertissement}} | {{avertissement}} | ||
- | == | + | {{vidéo|numérovidéo = <videoflash type="mediaspip" num="1">http://mediaspip.ptitdeb.infini.fr/IMG/flv/quilibre_d_un_marteau_et_d_un_regle-encoded.flv|400|300</videoflash>}} |
- | + | ||
== '''Matériel''' == | == '''Matériel''' == | ||
+ | |||
* [[Image:Marteau.jpg|50px]] Un [[marteau]] | * [[Image:Marteau.jpg|50px]] Un [[marteau]] | ||
- | * [[Image:Elastique.jpg|50px]] Un élastique | + | * [[Image:Elastique.jpg|50px]] Un [[élastique]] |
- | * [[Image:Regle.JPEG|50px | + | * [[Image:Regle.JPEG|50px]] Une [[règle]] |
- | * [[Image:Table. | + | * [[Image:Table.JPG|50px]] Une [[table]] |
== '''L'expérience''' == | == '''L'expérience''' == | ||
- | |||
- | '' | + | ==='''En vidéo'''=== |
==='''La manipulation'''=== | ==='''La manipulation'''=== | ||
- | |||
+ | * Glisser la règle et le manche du marteau dans l'élastique. | ||
+ | * Placer la tête du marteau sous la table. | ||
+ | * Seul le bout de la règle repose sur le bord de la table. | ||
- | + | ==='''Que voit-on ?'''=== | |
+ | On voit que le système oscille autour de sa position d'équilibre et s'arrête ensuite. | ||
- | + | == '''Explications''' == | |
+ | ==='''De manière simple'''=== | ||
- | + | Le centre de gravité de ce montage se situe près de la tête du marteau. Donc l'attraction de la force gravitationnelle vient surtout du de dessous la table, sous l'endroit le plus lourd, et non du point d'attache entre le marteau et la règle. | |
- | ===''' | + | === '''Questions sans réponses''' === |
- | + | ||
+ | * Cette expérience fonctionnerait-elle avec une ficelle ? | ||
+ | * La taille de la boucle de l'élastique joue-t-elle vraiment un rôle dans la manipulation ? | ||
- | == ''' | + | === '''Allons plus loin dans l'explication''' === |
- | + | La gravitation est la seule interaction fondamentale dont la sensation est directe et permanente, par l'intermédiaire de son effet le plus immédiat dans notre environnement. | |
- | + | La loi de la gravitation universelle de Newton est toujours utilisée pour calculer les effets de la gravitation dans des situations normales. C'est Newton qui a établi la formule permettant de calculer la valeur de champ gravitationnel g créé par une masse m<sub>1</sub> (en kilogrammes) à une distance d (en mètres). | |
- | + | ||
- | = | + | g = G.m<sub>1</sub>/d<sup>2</sup> |
- | + | ||
- | = | + | G étant la constante gravitationnelle, G=6,6742 x 10<sup>-11</sup> (en Newton.mètres<sup>2</sup>.kilogrammes<sup>-2</sup> ou en mètres<sup>3</sup>.kg<sup>-1</sup>.secondes<sup>-2</sup>) |
- | + | ||
- | + | ||
+ | La force d'attraction subie par un objet masse m (en kilogrammes) est alors : F = m.g, l'unité de mesure de cette force est le newton. | ||
+ | |||
+ | À la surface de la Terre, g = G.m<sub>T</sub> / d<sub>T</sub><sup>2</sup> | ||
+ | |||
+ | * G = constante gravitationnelle = 6,6742 x 10<sup>-11</sup> m<sup>3</sup>.Kg<sup>-1</sup>.s<sup>-2</sup> | ||
+ | * m<sub>T</sub> = masse de la terre = 5,9736 x 10<sup>24</sup> kg | ||
+ | * d<sub>T</sub> = distance du centre de gravité à la surface = rayon de la terre = 6 378 137 m | ||
+ | |||
+ | |||
+ | C'est-à-dire : g = 6,6742.10<sup>-11</sup>.5,9736.10<sup>24</sup>/(6 378 137)<sup>2</sup> = 9,81 m.s<sup>-2</sup> | ||
+ | |||
+ | |||
+ | et si on veut vérifier la cohérence des unités de mesure : | ||
+ | |||
+ | |||
+ | m<sup>3</sup>.Kg<sup>-1</sup>.s<sup>-2</sup>xkg/m<sup>2</sup> = m.s<sup>-2</sup> | ||
== '''Liens avec d'autres expériences''' == | == '''Liens avec d'autres expériences''' == | ||
- | ==='''Expériences sur | + | ==='''Expériences sur Wikidébrouillard'''=== |
+ | |||
+ | * [[équilibriste]] | ||
==='''Autres expériences'''=== | ==='''Autres expériences'''=== | ||
- | |||
- | |||
== '''Applications : liens avec le quotidien''' == | == '''Applications : liens avec le quotidien''' == | ||
- | |||
+ | La manifestation la plus courante de la gravité est bien sûr la pesanteur, c'est-à-dire l'attraction entre la Terre et les objets qui sont à proximité. | ||
+ | |||
+ | Voir [http://fr.wikipedia.org/wiki/Pesanteur pesanteur] sur Wikipédia. | ||
=='''Catégories'''== | =='''Catégories'''== | ||
- | |||
- | |||
- | [[Catégorie: | + | [[Catégorie:Physique]] |
- | [[Catégorie: | + | [[Catégorie:mécanique]] |
- | [[Catégorie: | + | [[Catégorie:équilibre]] |
- | [[Catégorie: | + | [[Catégorie:forces]] |
+ | [[Catégorie:gravité]] | ||
[[Catégorie:Contenus à développer]] | [[Catégorie:Contenus à développer]] | ||
[[Catégorie:Fiche à Valider]] | [[Catégorie:Fiche à Valider]] | ||
[[Catégorie:expérience]] | [[Catégorie:expérience]] | ||
+ | [[Catégorie:mediaspip]] | ||
+ | [[Catégorie:magie]] |
Sommaire |
On voit que le système oscille autour de sa position d'équilibre et s'arrête ensuite.
Le centre de gravité de ce montage se situe près de la tête du marteau. Donc l'attraction de la force gravitationnelle vient surtout du de dessous la table, sous l'endroit le plus lourd, et non du point d'attache entre le marteau et la règle.
La gravitation est la seule interaction fondamentale dont la sensation est directe et permanente, par l'intermédiaire de son effet le plus immédiat dans notre environnement. La loi de la gravitation universelle de Newton est toujours utilisée pour calculer les effets de la gravitation dans des situations normales. C'est Newton qui a établi la formule permettant de calculer la valeur de champ gravitationnel g créé par une masse m1 (en kilogrammes) à une distance d (en mètres).
g = G.m1/d2
G étant la constante gravitationnelle, G=6,6742 x 10-11 (en Newton.mètres2.kilogrammes-2 ou en mètres3.kg-1.secondes-2)
La force d'attraction subie par un objet masse m (en kilogrammes) est alors : F = m.g, l'unité de mesure de cette force est le newton.
À la surface de la Terre, g = G.mT / dT2
C'est-à-dire : g = 6,6742.10-11.5,9736.1024/(6 378 137)2 = 9,81 m.s-2
et si on veut vérifier la cohérence des unités de mesure :
m3.Kg-1.s-2xkg/m2 = m.s-2
La manifestation la plus courante de la gravité est bien sûr la pesanteur, c'est-à-dire l'attraction entre la Terre et les objets qui sont à proximité.
Voir pesanteur sur Wikipédia.
© Graphisme : Les Petits Débrouillards Grand Ouest (Patrice Guinche - Jessica Romero) | Développement web : Libre Informatique